Hi, Got the three phase spwm program from the forum for switching frequency of 2050Hz, can anyone plz help to get the switching frequency of 100Hz. Program for 2050Hz switching frequency is below 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 //----------------------------------------------------------------------------------- //----------------------------------------------------------------------------------- // Ioannis Pallis, 2014 // This code implements 3-phase sinusoidal PWM. // // The user sets the frequency of the SPWM by setting appropriately the // EPWM1_TIMER_TBPRD variable. The frequency of the PWM,up and down mode, // obeys the equations: TPWM=2xTBPRDxTTBCLK, TTBCLK=SYSCLKOUT/(HSPCLKDIVxCLKDIV). // By default: HSPCLKDIV=2, CLKDIV=1. // // The sine for the PWM is read by the chip ROM. The sine table consists of // 512 elements. // The frequency of sinusoidal PWM is defined by the period of the timer0 interrupt. // For 50Hz the sine table must be read, entirely in 20msec. This means that the // timer0 interrupt must occur in every 20/512 msec. // The general type for the is Ttimer=Tsin*Fcpu/index. // // The 120 degrees difference of the sine are set by the variables: // index = 0, zero degrees // index2= 170, 120 degrees // index3=340, for 240 degrees // // //------------------------------------------------------------------------------------ //------------------------------------------------------------------------------------ #include #include #include "DSP28x_Project.h" // DSP28x Headerfile #include "f2802x_common/include/F2802x_GlobalPrototypes.h" #include "f2802x_common/include/pll.h" #include "f2802x_common/include/clk.h" #include "f2802x_common/include/wdog.h" #include "f2802x_common/include/flash.h" #include "f2802x_common/include/gpio.h" #include "f2802x_common/include/pie.h" #include "f2802x_common/include/adc.h" #include "f2802x_common/include/sci.h" #include "f2802x_common/include/sci_io.h" #include "f2802x_common/include/pwm.h" #include "f2802x_common/include/timer.h" #include "f2802x_common/include/IQmathLib.h" //IQmath Library header file extern void DSP28x_usDelay(Uint32 Count); #pragma DATA_SECTION(sine_table,"IQmathTables"); //IQmath ROM sine table _iq30 sine_table[512]; //Interrupt prototype function for timer0 interrupt void cpu_timer0_isr( void ); void update_compare( void ); //Global PWM variables #define EPWM1_TIMER_TBPRD 14634 // Period register for 2050.2Hz #define PHASE 120.0 // Defines the real in degrees phase between phases, 120deg #define TTIMERREG 2343 // Timer interrupt for 50Hz SPWM Uint16 EPWM_PHASE=(EPWM1_TIMER_TBPRD*PHASE/180.0); //The phase as seen from the EPWM module Uint16 duty_cycle_A=1000; // Set duty 50% initially Uint16 duty_cycle_B=1000; // Set duty 50% initially Uint16 index=0; // Zero degrees sine Uint16 index2=170; // 120 degrees sine difference Uint16 index3=340; // 240 degrees sine difffence Uint16 DEADTIME_R=5.0; // Deadtime 5usec Uint16 DEADTIME_F=5.0; // Deadtime 5usec // Handles setup CPU_Handle myCpu; PLL_Handle myPll; WDOG_Handle myWDog; CLK_Handle myClk; ADC_Handle myAdc; FLASH_Handle myFlash; GPIO_Handle myGpio; PIE_Handle myPie; SCI_Handle mySci; PWM_Handle PWMA,PWMB,PWMC; TIMER_Handle myTimer0; // Handles initialization void setup_handles() { myClk = CLK_init(( void *)CLK_BASE_ADDR, sizeof (CLK_Obj)); myPll = PLL_init(( void *)PLL_BASE_ADDR, sizeof (PLL_Obj)); myWDog = WDOG_init(( void *)WDOG_BASE_ADDR, sizeof (WDOG_Obj)); myCpu = CPU_init(( void *)NULL, sizeof (CPU_Obj)); myFlash = FLASH_init(( void *)FLASH_BASE_ADDR, sizeof (FLASH_Obj)); myGpio = GPIO_init(( void *)GPIO_BASE_ADDR, sizeof (GPIO_Obj)); myPie = PIE_init(( void *)PIE_BASE_ADDR, sizeof (PIE_Obj)); mySci = SCI_init(( void *)SCIA_BASE_ADDR, sizeof (SCI_Obj)); myAdc = ADC_init(( void *)ADC_BASE_ADDR, sizeof (ADC_Obj)); PWMA = PWM_init(( void *)PWM_ePWM1_BASE_ADDR, sizeof (PWM_Obj)); PWMB = PWM_init(( void *)PWM_ePWM2_BASE_ADDR, sizeof (PWM_Obj)); PWMC = PWM_init(( void *)PWM_ePWM3_BASE_ADDR, sizeof (PWM_Obj)); myTimer0 = TIMER_init(( void *)TIMER0_BASE_ADDR, sizeof (TIMER_Obj)); } //System Initialization void init_system() { //Disable watchcdog WDOG_disable(myWDog); //Device calibration for the adc (*Device_cal)(); //Sets the internal oscillator source CLK_setOscSrc(myClk, CLK_OscSrc_Internal); // Setup the PLL for x10 /2 which will yield 60Mhz = 10Mhz * 12 / 2 PLL_setup(myPll, PLL_Multiplier_12, PLL_DivideSelect_ClkIn_by_2); //Disable the PIE peripheral and all the interupts PIE_disable(myPie); PIE_disableAllInts(myPie); CPU_disableGlobalInts(myCpu); CPU_clearIntFlags(myCpu); #ifdef _FLASH memcpy (&RamfuncsRunStart, &RamfuncsLoadStart, ( size_t )&RamfuncsLoadSize); #endif } //GPIO initialization void gpio_init() { // Initialize GPIO for the EPWM1A and EPWM1B GPIO_setPullUp(myGpio, GPIO_Number_0, GPIO_PullUp_Disable); GPIO_setPullUp(myGpio, GPIO_Number_1, GPIO_PullUp_Disable); GPIO_setMode(myGpio, GPIO_Number_0, GPIO_0_Mode_EPWM1A); GPIO_setMode(myGpio, GPIO_Number_1, GPIO_1_Mode_EPWM1B); GPIO_setDirection(myGpio,GPIO_Number_0,GPIO_Direction_Output); GPIO_setDirection(myGpio,GPIO_Number_1,GPIO_Direction_Output); // Initialize GPIO for the EPWM2A and EPWM2B GPIO_setPullUp(myGpio, GPIO_Number_2, GPIO_PullUp_Disable); GPIO_setPullUp(myGpio, GPIO_Number_3, GPIO_PullUp_Disable); GPIO_setMode(myGpio, GPIO_Number_2, GPIO_2_Mode_EPWM2A); GPIO_setMode(myGpio, GPIO_Number_3, GPIO_3_Mode_EPWM2B); GPIO_setDirection(myGpio,GPIO_Number_2,GPIO_Direction_Output); GPIO_setDirection(myGpio,GPIO_Number_3,GPIO_Direction_Output); // Initialize GPIO for the EPWM2A and EPWM2B GPIO_setPullUp(myGpio, GPIO_Number_4, GPIO_PullUp_Disable); GPIO_setPullUp(myGpio, GPIO_Number_5, GPIO_PullUp_Disable); GPIO_setMode(myGpio, GPIO_Number_4, GPIO_4_Mode_EPWM3A); GPIO_setMode(myGpio, GPIO_Number_5, GPIO_5_Mode_EPWM3B); GPIO_setDirection(myGpio,GPIO_Number_4,GPIO_Direction_Output); GPIO_setDirection(myGpio,GPIO_Number_5,GPIO_Direction_Output); } //PWM settings void pwma_init() { // PWMA initialization CLK_enablePwmClock(myClk, PWM_Number_1); //PWMA initialiazation // Setup TBCLK PWM_setCounterMode(PWMA,PWM_CounterMode_UpDown); // Count up-down PWM_setPeriod(PWMA,EPWM1_TIMER_TBPRD); // Set timer period PWM_disableCounterLoad(PWMA); // Disable phase loading PWM_setSyncMode(PWMA,PWM_SyncMode_Disable); PWM_setCount(PWMA, 0x0000); // Clear counter PWM_setClkDiv(PWMA, PWM_ClkDiv_by_1); PWM_setHighSpeedClkDiv(PWMA, PWM_HspClkDiv_by_1); // Clock ratio to SYSCLKOUT // Setup shadowing PWM_setShadowMode_CmpA(PWMA, PWM_ShadowMode_Shadow); PWM_setShadowMode_CmpB(PWMA, PWM_ShadowMode_Shadow); PWM_setLoadMode_CmpA(PWMA, PWM_LoadMode_Zero); PWM_setLoadMode_CmpB(PWMA, PWM_LoadMode_Zero); PWM_setCmpA(PWMA,1000); //Initial duty cycle PWM_setCmpB(PWMA,1000); // Set actions PWM_setActionQual_CntUp_CmpA_PwmA(PWMA, PWM_ActionQual_Set); // Set PWM1A on event A, up count PWM_setActionQual_CntDown_CmpA_PwmA(PWMA, PWM_ActionQual_Clear); // Clear PWM1A on event A, down count PWM_setActionQual_CntUp_CmpB_PwmB(PWMA, PWM_ActionQual_Clear); // Set PWM1B on event B, up count PWM_setActionQual_CntDown_CmpB_PwmB(PWMA, PWM_ActionQual_Set); // Clear PWM1B on event B, down count //Set DeadBand Control PWM_setDeadBandOutputMode(PWMA, PWM_DeadBandOutputMode_EPWMxA_Rising_EPWMxB_Falling); PWM_setDeadBandPolarity(PWMA, PWM_DeadBandPolarity_EPWMxB_Inverted); PWM_setDeadBandInputMode(PWMA, PWM_DeadBandInputMode_EPWMxA_Rising_and_Falling); PWM_setDeadBandRisingEdgeDelay(PWMA, DEADTIME_R); PWM_setDeadBandFallingEdgeDelay(PWMA, DEADTIME_F); //-------------------------------------------------------------------------------------------------------------------- //-------------------------------------------------------------------------------------------------------------------- //PWMB initialization CLK_enablePwmClock(myClk, PWM_Number_2); // Setup TBCLK PWM_setCounterMode(PWMB,PWM_CounterMode_UpDown); // Count up-down PWM_setPeriod(PWMB,EPWM1_TIMER_TBPRD); // Set timer period PWM_enableCounterLoad(PWMB); PWM_setPhaseDir(PWMB,PWM_PhaseDir_CountDown); PWM_setSyncMode(PWMB,PWM_SyncMode_Disable); PWM_setCount(PWMB, 0x0000); // Clear counter PWM_setClkDiv(PWMB, PWM_ClkDiv_by_1); PWM_setHighSpeedClkDiv(PWMB, PWM_HspClkDiv_by_1); // Clock ratio to SYSCLKOUT // Setup shadowing PWM_setShadowMode_CmpA(PWMB, PWM_ShadowMode_Shadow); PWM_setShadowMode_CmpB(PWMB, PWM_ShadowMode_Shadow); PWM_setLoadMode_CmpA(PWMB, PWM_LoadMode_Zero); PWM_setLoadMode_CmpB(PWMB, PWM_LoadMode_Zero); PWM_setCmpA(PWMB,1000); //Initial duty cycle PWM_setCmpB(PWMB,1000); // Set actions PWM_setActionQual_CntUp_CmpA_PwmA(PWMB, PWM_ActionQual_Set); // Set PWM2A on event A, up count PWM_setActionQual_CntDown_CmpA_PwmA(PWMB, PWM_ActionQual_Clear); // Clear PWM2A on event A, down count PWM_setActionQual_CntUp_CmpB_PwmB(PWMB, PWM_ActionQual_Clear); // Set PWM2B on event B, up count PWM_setActionQual_CntDown_CmpB_PwmB(PWMB, PWM_ActionQual_Set); // Clear PWM2B on event B, down count //Set DeadBand Control PWM_setDeadBandOutputMode(PWMB, PWM_DeadBandOutputMode_EPWMxA_Rising_EPWMxB_Falling); PWM_setDeadBandPolarity(PWMB, PWM_DeadBandPolarity_EPWMxB_Inverted); PWM_setDeadBandInputMode(PWMB, PWM_DeadBandInputMode_EPWMxA_Rising_and_Falling); PWM_setDeadBandRisingEdgeDelay(PWMB, DEADTIME_R); PWM_setDeadBandFallingEdgeDelay(PWMB, DEADTIME_F); //--------------------------------------------------------------------------------------------------------------- //--------------------------------------------------------------------------------------------------------------- //PWMC initialization CLK_enablePwmClock(myClk, PWM_Number_3); // Setup TBCLK PWM_setCounterMode(PWMC,PWM_CounterMode_UpDown); // Count up-down PWM_setPeriod(PWMC,EPWM1_TIMER_TBPRD); // Set timer period PWM_enableCounterLoad(PWMC); PWM_setPhaseDir(PWMC,PWM_PhaseDir_CountUp); PWM_setSyncMode(PWMC,PWM_SyncMode_Disable); PWM_setCount(PWMC, 0x0000); // Clear counter PWM_setClkDiv(PWMC, PWM_ClkDiv_by_1); PWM_setHighSpeedClkDiv(PWMC, PWM_HspClkDiv_by_1); // Clock ratio to SYSCLKOUT // Setup shadowing PWM_setShadowMode_CmpA(PWMC, PWM_ShadowMode_Shadow); PWM_setShadowMode_CmpB(PWMC, PWM_ShadowMode_Shadow); PWM_setLoadMode_CmpA(PWMC, PWM_LoadMode_Zero); PWM_setLoadMode_CmpB(PWMC, PWM_LoadMode_Zero); PWM_setCmpA(PWMC,1000); //Initial duty cycle PWM_setCmpB(PWMC,1000); // Set actions PWM_setActionQual_CntUp_CmpA_PwmA(PWMC, PWM_ActionQual_Set); // Set PWM3A on event A, up count PWM_setActionQual_CntDown_CmpA_PwmA(PWMC, PWM_ActionQual_Clear); // Clear PWM3A on event A, down count PWM_setActionQual_CntUp_CmpB_PwmB(PWMC, PWM_ActionQual_Clear); // Set PWM3B on event B, up count PWM_setActionQual_CntDown_CmpB_PwmB(PWMC, PWM_ActionQual_Set); // Clear PWM3B on event B, down count //Set DeadBand Control PWM_setDeadBandOutputMode(PWMC, PWM_DeadBandOutputMode_EPWMxA_Rising_EPWMxB_Falling); PWM_setDeadBandPolarity(PWMC, PWM_DeadBandPolarity_EPWMxB_Inverted); PWM_setDeadBandInputMode(PWMC, PWM_DeadBandInputMode_EPWMxA_Rising_and_Falling); PWM_setDeadBandRisingEdgeDelay(PWMC, DEADTIME_R); PWM_setDeadBandFallingEdgeDelay(PWMC, DEADTIME_F); CLK_enableTbClockSync(myClk); } //PIE settings void pie_init() { PIE_enable(myPie); EALLOW; EDIS; PIE_registerPieIntHandler(myPie, PIE_GroupNumber_1, PIE_SubGroupNumber_7, (intVec_t)&cpu_timer0_isr); EDIS; } //Timer settings void timer0_init() { TIMER_stop(myTimer0); TIMER_setPeriod(myTimer0,TTIMERREG); TIMER_setPreScaler(myTimer0,0); TIMER_reload(myTimer0); TIMER_setEmulationMode(myTimer0, TIMER_EmulationMode_StopAfterNextDecrement); TIMER_enableInt(myTimer0); TIMER_start(myTimer0); } void main() { setup_handles(); init_system(); gpio_init(); pwma_init(); pie_init(); timer0_init(); //Enables the CPU interrupt CPU_enableInt(myCpu, CPU_IntNumber_1); //Enables the interrupt of the Timer0 for the PIE module PIE_enableTimer0Int(myPie); CPU_enableGlobalInts(myCpu); CPU_enableDebugInt(myCpu); //Forever Loop to see the results for (;;) { } } interrupt void cpu_timer0_isr( void ) { update_compare(); // Acknowledge this interrupt to receive more interrupts from group 1 PIE_clearInt(myPie, PIE_GroupNumber_1); } void update_compare( void ) { PWM_setCmpA(PWMA,_IQsat(_IQ30mpy((sine_table[index]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); PWM_setCmpB(PWMA,_IQsat(_IQ30mpy((sine_table[index]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); PWM_setCmpA(PWMB,_IQsat(_IQ30mpy((sine_table[index2]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); PWM_setCmpB(PWMB,_IQsat(_IQ30mpy((sine_table[index2]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); PWM_setCmpA(PWMC,_IQsat(_IQ30mpy((sine_table[index3]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); PWM_setCmpB(PWMC,_IQsat(_IQ30mpy((sine_table[index3]+_IQ30(0.9999))/2,EPWM1_TIMER_TBPRD),EPWM1_TIMER_TBPRD,0)); if (index++ >511) index = 0; if (index2++ >511) index2 = 0; if (index3++ >511) index3 = 0; } //---------------------------------------------
↧